# HTG12864-55-31N-28K08-S

LCD Module User Manual

Shenzhen HOT Display Technology Co., Ltd.

| Rev. | Descriptions      | Date       |
|------|-------------------|------------|
| 01   | Prelimiay Release | 2009-04-15 |
|      |                   |            |

# **Table of Content**

| 1.                | Bsaic Specifications                                                                                               | 3             |
|-------------------|--------------------------------------------------------------------------------------------------------------------|---------------|
| 1.3               | Display Specifications<br>Mechanical Specifications<br>Circuit Diagram<br>Terminal Function.                       | .3<br>.3      |
| 2.                | Absolute Maximum Ratings                                                                                           | 5             |
| 3.                | Electrical Characteristics                                                                                         | 5             |
| 3.2               | DC CharacteristicsAC CharacteristicsReset Timing.                                                                  | .6            |
| 4.                | Function specifications                                                                                            | 8             |
| 4.2<br>4.3<br>4.4 | The Serial Interface<br>Basic Setting<br>Resetting the LCD module<br>Display Commands<br>Basic Operating Sequence. | .9<br>9<br>10 |
| 5.                | Inspection Standards                                                                                               | 12            |
| 6.                | Handling Precautions                                                                                               | 13            |
| 6.3               | Mounting method<br>Cautions of LCD handling and cleaning<br>Caution against static charge<br>Packaging             | .13<br>.13    |
| 6.6               | Caution for operation<br>Storage<br>Safety                                                                         | 13            |

# **1. Bsaic Specifications**

### **1.1 Display Specifications**

| 1>LCD Display Mode | : FSTN, Positive, Transflective |
|--------------------|---------------------------------|
| 2>Viewing Angle    | : 6H                            |
| 3>Driving Method   | : 1/64 Duty, 1/9 Bias           |
| 4>Backlight        | : without                       |

### **1.2 Mechanical Specifications**

1>Outline Dimension : 28.55 x 20.1 x 1.7mm (See attached Outline Drawing for Details)



# **1.4 Terminal Function**

| Pin No. | Pin Name            | Function                                                                                                                           |  |  |  |  |  |  |
|---------|---------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1       | VDD                 | Power supply voltage (Positive)                                                                                                    |  |  |  |  |  |  |
| 2       | P/S                 | Connect to VSS                                                                                                                     |  |  |  |  |  |  |
| 3       | C86                 | Connect to VSS                                                                                                                     |  |  |  |  |  |  |
| 4~8     | V0,V1,V2,V3,V4      | This is a multi-level power supply for the liquid crystal drive<br>Connect a capacitor between this terminal and the VSS terminal. |  |  |  |  |  |  |
| 9~13    | C2-,C2+,C1+,C1-,C3+ | When internal DC-DC voltage converter is used, external capa is connected between these pins.                                      |  |  |  |  |  |  |
| 14      | VOUT                | positive voltage supply pin of the chip.                                                                                           |  |  |  |  |  |  |
| 15      | VSS                 | Negative power supply,0V                                                                                                           |  |  |  |  |  |  |
| 16      | VDD                 | Power supply voltage (3.3V)                                                                                                        |  |  |  |  |  |  |
| 17      | SI                  | Serial data Input (D7) ;                                                                                                           |  |  |  |  |  |  |
| 18      | SCL                 | Serial clock Input (D6)                                                                                                            |  |  |  |  |  |  |
| 19      | VDD                 | Power supply voltage (3.3V)                                                                                                        |  |  |  |  |  |  |
| 20~24   | NC                  | No Connection                                                                                                                      |  |  |  |  |  |  |
| 25      | A0                  | Data/Command control<br>A0 = "H": Indicates that D7 are display data.<br>A0 = "L": Indicates that D7 are control data.             |  |  |  |  |  |  |
| 26      | /RES                | When /RES is set to "L", the register settings are initialized (cleared).                                                          |  |  |  |  |  |  |
| 27      | /CS1                | When $/CS1 = "L"$ , then the chip select                                                                                           |  |  |  |  |  |  |
| 28      | NC                  | No Connection                                                                                                                      |  |  |  |  |  |  |

# 2. Absolute Maximum Ratings

| Items                 | Symbol | MIN. | MAX.    | Unit | Condition       |
|-----------------------|--------|------|---------|------|-----------------|
| Supply Voltage        | Vdd    | -0.3 | +3.6    | V    | Vss = 0V        |
| Input Voltage         | Vin    | -0.3 | Vdd+0.3 | V    | Vss = 0V        |
| Operating Temperature | Тор    | -20  | +70     | °C   | No Condensation |
| Storage Temperature   | Tst    | -30  | +80     | °C   | No Condensation |

# **3. Electrical Characteristics**

# 3.1 DC Characteristics

| $Vss = 0V$ , $Top = 25^{\circ}C$ |
|----------------------------------|
|----------------------------------|

| Items                  | Symbol | MIN.      | TYP. | MAX.        | Unit | Condition           |  |
|------------------------|--------|-----------|------|-------------|------|---------------------|--|
| Operating Voltage      | Vdd    | 2.8       | 3.3  | 3.6         | V    | VDD                 |  |
| Input High Voltage     | Vін    | 0.8 x Vdd | -    | Vdd         | V    |                     |  |
| Input Low Voltage      | Vil    | Vss       | -    | 0.2 x Vdd V |      | /CS,/RES,A0,SCL,SID |  |
| Output High Voltage    | Vон    | 0.8 x Vdd | -    | Vdd         | V    | -                   |  |
| Output Low Voltage     | Vol    | Vss       | -    | 0.2 x Vdd   | V    | -                   |  |
| Input Leakage Current  | ١Lı    | -1.0      | -    | 1.0         | μA   | VDD                 |  |
| Output Leakage Current | lLo    | -3.0      | -    | 3.0         | μA   | VDD                 |  |

### 3.2 AC Characteristics

#### 3.2.1 Serial Mode Interface



|                         |        |        |           | (VDD = 3.3V) | <u>Ta = -30 t</u> | <u>o 85°C)</u> |
|-------------------------|--------|--------|-----------|--------------|-------------------|----------------|
| ltem                    | Signal | Symbol | Condition | Rat          | ing               | Units          |
| Item                    | Signal | Symbol | condition | Min.         | Max.              | onits          |
| 4-line SPI Clock Period |        | Tscyc  |           | 50           | _                 |                |
| SCL "H" pulse width     | SCL    | Tshw   |           | 25           | _                 |                |
| SCL "L" pulse width     |        | Tslw   |           | 25           | _                 |                |
| Address setup time      | A0     | Tsas   |           | 20           | _                 |                |
| Address hold time       | AU     | Tsah   |           | 10           | _                 | ns             |
| Data setup time         | SI     | Tsds   |           | 20           | _                 |                |
| Data hold time          | 51     | Тѕон   |           | 10           | _                 |                |
| CS-SCL time             | cs     | Tcss   |           | 20           | _                 |                |
| CS-SCL time             |        | Tcsh   |           | 40           | _                 |                |

#### Note:

\*a. all timing is using 20  $\%\;$  and 80  $\%\;$  of VDD as the reference

### 3.3 Reset Timing



Vss = 0V,Top = 25℃

| Items                 | Symbol | MIN. | TYP. | MAX. | Unit | Condition |
|-----------------------|--------|------|------|------|------|-----------|
| Reset time            | Tr     | -    | -    | 2.5  | μS   | -         |
| Reset Low pules width | Trw    | 2.5  | -    | -    | μS   | -         |

Note:

\*a. all timing is using 20% and 80% of VDD as the reference.

# 4. Function specifications

#### 4.1 The Serial Interface

When the 4-line SPI interface has been selected (P/S = "L") then when the chip is in active state (/CS1 = "L" and CS2 = "H") the 4-line SPI data input (SI) and the 4-line SPI clock input (SCL) can be received. The 4-line SPI data is read from the 4-line SPI data input pin in the rising edge of the 4-line SPI clocks D7, D6 through D0, in this order. This data is converted to 8 bits parallel data in the rising edge of the

eighth 4-line SPI clock for the processing. The A0 input is used to determine whether or the 4-line SPI data input is display data or command data; when A0 = "H", the data is display data, and when A0 = "L" then the data is command data. The A0 input is read and used for detection every 8th rising edge of the 4-line SPI clock after the chip becomes active. Figure 1 is a 4-line SPI interface signal chart.



\* When the chip is not active, the shift registers and the counter are reset to their initial states.

\* Reading is not possible while in 4-line SPI interface mode.

\* Caution is required on the SCL signal when it comes to line-end reflections and external noise. We recommend that operation be rechecked on the actual equipment.

# 4.2 Basic Setting

To drive the LCD module correctly and provide normally display, please use the following seting

- 1 > ADC = 0 (normal)
- 2> SHL select = 1(reverse)
- 3> LCD Bias Select = 1/9
- 4> Initial Display Line = 0
- 5> Entire Display ON/OF = OFF(normal)
- 6> Reverse Display ON/OF = OFF(normal)
- 7> Set Power Control Set:
  - Voltage follower = ON, voltage converter = ON, Voltage regulator = ON
- 8> Display ON/OF =ON

### 4.3 Resetting the LCD module

The LCD module should be initialized bu using /RES terminal.

While turning on the VDD and VSS power supply, maintain /RES terminal at LOW level, After the Power supply stabilized, release the reset terminal(/RES = High)

### 4.4 Display Commands

|     |                                      |    |     | Code |    |     |     |       |       |             |       |      | Function                                                                                                                                                                |
|-----|--------------------------------------|----|-----|------|----|-----|-----|-------|-------|-------------|-------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | Instrctions                          | AO | /RD | /WR  | D7 | D6  | D5  | D4    | D3    | D2          | D1    | DO   |                                                                                                                                                                         |
| 1   | Display ON/OFF                       | 0  | 1   | 0    | 1  | 0   | 1   | 0     | 1     | 1           | 1     | NO   | DON=0,display off<br>DON=1,display on                                                                                                                                   |
| 2   | Display start line set               | 0  | 1   | 0    | 0  | 1   | Dis | spla  | y sta | art a       | ddre  | ess  | Set the display RAM display start line address                                                                                                                          |
| 3   | Set Page Address                     | 0  | 1   | 0    | 1  | 0   | 1   | 1     | Pa    | ige a       | addre | ess  | Set the display RAM Page address                                                                                                                                        |
|     | Ser Column Address<br>(Upper-4 bits) | 0  | 1   | 0    | 0  | 0   | 0   | 1     | (     | Col.        | Ad    | d    | Set the upper-4-bit of column address counter                                                                                                                           |
| 4   | Ser Column Address<br>(Lower-4 bits) | 0  | 1   | 0    | 0  | 0   | 0   | 0     | (     | Col.        | Ad    | d    | Set the low-4-bit of column address counter                                                                                                                             |
| 5   | Read Staus                           | 0  | 0   | 1    |    | Sta | tus |       | 0     | 0           | 0     | 0    | Read the status data                                                                                                                                                    |
| 6   | Write Display Data                   | 1  | 1   | 0    |    |     | W   | /rite | Da    | ta          |       |      | Write data into the display RAM                                                                                                                                         |
| 7   | Read Display Data                    | 1  | 0   | 1    |    |     | R   | ead   | Da    | ta          |       |      | Read data from the display RAM                                                                                                                                          |
| 8   | ADC Select                           | 0  | 1   | 0    | 1  | 0   | 1   | 0     | 0     | 0           | 0     | ADC  | Set the display RAM address SEG output<br>Correspondence<br>ADC = 0,Normal. ADC = 1,Reverse                                                                             |
| 9   | Normal/Reverse Display               | 0  | 1   | 0    | 1  | 0   | 1   | 0     | 0     | 1           | 1     | REV  | REV = 0, Normal<br>REV = 1, Reverse                                                                                                                                     |
| 10  | Entire Display ON/OFF                | 0  | 1   | 0    | 1  | 0   | 1   | 0     | 0     | 1           | 0     | EON  | EON = 0, Normal<br>EON = 1, Entire display ON                                                                                                                           |
| 11  | Set LCD Bias                         | 0  | 1   | 0    | 1  | 0   | 1   | 0     | 0     | 0           | 1     | BIAS | Bias = 0, 1/9 Bias<br>Bias = 1, 1/7 Bias                                                                                                                                |
| 12  | Set Read-Modify-Write                | 0  | 1   | 0    | 1  | 1   | 1   | 0     | 0     | 0           | 0     | 0    | Enter the "Read-Modify-Write" mode                                                                                                                                      |
| 13  | Reset Read-Modify-Write              | 0  | 1   | 0    | 1  | 1   | 1   | 0     | 1     | 1           | 1     | 0    | Clear the "Read-Modify-Write" mode                                                                                                                                      |
| 14  | Reset                                | 0  | 1   | 0    | 1  | 1   | 1   | 0     | 0     | 0           | 1     | 0    | Resets the LCD module                                                                                                                                                   |
| 15  | SHL S elect                          | 0  | 1   | 0    | 1  | 1   | 0   | 0     | SHL   | *           | *     | *    | Set the COM scanning direction<br>SHL = 0, Normal<br>SHL = 1, Flipped in y-direction<br>* = don't care terms                                                            |
| 16  | Power Control Set                    | 0  | 1   | 0    | 0  | 0   | 1   | 0     | 1     | VC          | VR    | VF   | Set the power circuit operation mode<br>VF : LCD Supply Voltage Follower<br>VR : LCD Supply Voltage Regulator<br>VF : LCD Supply Voltage Converter<br>(1 = ON, 0 = OFF) |
| 17  | Regulator Resistor Select            | 0  | 1   | 0    | 0  | 0   | 1   | 0     | 0     | Ra          | atio  |      | Set the built-in resistor ratio (Rb/Ra)                                                                                                                                 |
|     | Electronic volume mode set           | 0  | 1   | 0    | 1  | 0   | 0   | 0     | 0     | 0           | 0     | 1    | Set reference voltage mode                                                                                                                                              |
| 18  | Electronic volume register set       | 0  | 1   | 0    | *  | *   |     |       |       | ron<br>I va |       | <br> | Set reference voltage register                                                                                                                                          |
| 19  | Power Save                           |    | -   | -    | -  | -   | -   | -     | -     | -           | -     | -    | Compound instruction<br>Display OFF + Entire Display ON                                                                                                                 |
| 20  | NOP                                  | 0  | 1   | 0    | 1  | 1   | 1   | 0     | 0     | 0           | 1     | 1    | Non-operation command                                                                                                                                                   |

### Note:

### \*a. For the details of the Display Commands, please refer to ST7565R data sheet

# 4.5 Basic Operating Sequence

#### 4.5.1 Initialization Sequence



# 5. Inspection Standards

| Item                                                           | Criterion for defects                                                                                                                                                                                          | Defect type |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1) Display on inspection                                       | <ul> <li>(1) Non display</li> <li>(2) Vertical line is deficient</li> <li>(3) Horizontal line is deficient</li> <li>(4) Cross line is deficient</li> </ul>                                                     | Major       |
| 2) Black / White spot                                          | Size $\Phi$ (mm)Acceptable number $\Phi \leq 0.3$ Ignore (note) $0.3 < \Phi \leq 0.45$ 3 $0.45 < \Phi \leq 0.6$ 1 $0.6 < \Phi$ 0                                                                               | Minor       |
| 3) Black / White line                                          | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                         | Minor       |
| 4) Display pattern                                             | $\frac{A+B \leq 0.28  0 < C  D+E \leq 0.25  F+G \leq 0.25}{2}$ Note: 1) Up to 3 damages acceptable<br>2) Not allowed if there are two or more pinholes every three-fourth inch.                                | Minor       |
| 5) Spot-like contrast<br>irregularity                          | Size $\Phi$ (mm)Acceptable Number $\Phi \leq 0.7$ Ignore (note) $0.7 < \Phi \leq 1.0$ 3 $1.0 < \Phi \leq 1.5$ 1 $1.5 < \Phi$ 0Note:1) Conformed to limit samples.2) Intervals of defects are more than 30mm.   | Minor       |
| 6) Bubbles in polarizer                                        | Size $\Phi$ (mm)         Acceptable Number $\Phi \leq 0.4$ Ignore (note) $0.4 < \Phi \leq 0.65$ 2 $0.65 < \Phi \leq 1.2$ 1 $1.2 < \Phi$ 0                                                                      | Minor       |
| 7) Scratches and dent on the polarizer                         | Scratches and dent on the polarizer shall be in the accordance with "2) Black/white spot", and "3) Black/White line".                                                                                          | Minor       |
| <li>B) Stains on the surface of LCD panel</li>                 | Stains which cannot be removed even when wiped lightly with a soft cloth or similar cleaning.                                                                                                                  | Minor       |
| 9) Rainbow color                                               | No rainbow color is allowed in the optimum contrast on state within the active area.                                                                                                                           | Minor       |
| 10) Viewing area<br>encroachment                               | Polarizer edge or line is visible in the opening viewing area due to polarizer shortness or sealing line.                                                                                                      | Minor       |
| 11) Bezel appearance                                           | Rust and deep damages that are visible in the bezel are rejected.                                                                                                                                              | Minor       |
| 12) Defect of land surface contact                             | Evident crevices that are visible are rejected.                                                                                                                                                                | Minor       |
| 13) Parts mounting                                             | <ol> <li>Failure to mount parts</li> <li>Parts not in the specifications are mounted</li> <li>For example: Polarity is reversed, HSC or TCP falls off.</li> </ol>                                              | Minor       |
| 14) Part alignment                                             | <ol> <li>LSI, IC lead width is more than 50% beyond pad outline.</li> <li>More than 50% of LSI, IC leads is off the pad outline.</li> </ol>                                                                    | Minor       |
| 15) Conductive foreign<br>matter (solder ball,<br>solder hips) | (1) $0.45<\Phi$ , N $\ge$ 1<br>(2) $0.3<\Phi \le 0.45$ , N $\ge$ 1, $\Phi$ : Average diameter of solder ball (unit: mm)<br>(3) $0.5, N\ge1, L: Average length of solder chip (unit: mm)$                       | Minor       |
| 16) Bezel flaw                                                 | Bezel claw missing or not bent                                                                                                                                                                                 | Minor       |
| 17) Indication on name plate<br>(sampling indication label)    | <ol> <li>Failure to stamp or label error, or not legible.(all acceptable if legible)</li> <li>The separation is more than 1/3 for indication discoloration, in which the characters can be checked.</li> </ol> | Minor       |

# 6. Handling Precautions

#### 6.1 Mounting method

A panel of LCD module made by our company consists of two thin glass plates with polarizers that easily get damaged. And since the module in so constructed as to be fixed by utilizing fitting holes in the printed circuit board (PCB), extreme care should be used when handling the LCD modules.

### 6.2 Cautions of LCD handling and cleaning

When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly.

-Isopropyl alcohol

-Ethyl alcohol

-Trichlorotriflorothane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.

Do not use the following solvent:

-Water

-Ketene

-Aromatics

#### 6.3 Caution against static charge

The LCD module use C-MOS LSI drivers. So we recommend you:

Connect any unused input terminal to  $V_{dd}$  or  $V_{ss}$ . Do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

#### 6.4 Packaging

-Module employs LCD elements, and must be treated as such. Avoid intense shock and falls from a height.

-To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity.

#### 6.5 Caution for operation

-It is an indispensable condition to drive LCD module within the limits of the specified voltage since the higher voltage over the limits may cause the shorter life of LCD module.

-An electrochemical reaction due to DC (direct current) causes LCD undesirable deterioration so that the uses of DC (direct current) drive should be avoided.

-Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD module may show dark color in them. However those phenomena do not mean malfunction or out of order of LCD module, which will come back in the specified operating temperature.

#### 6.6 Storage

In the case of storing for a long period of time, the following ways are recommended:

-Storage in polyethylene bag with the opening sealed so as not to enter fresh air outside in it. And with not desiccant.

-Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping the storage temperature range.

-Storing with no touch on polarizer surface by any thing else.

#### 6.7 Safety

-It is recommendable to crash damaged or unnecessary LCD into pieces and to wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later.

-When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off well at once with soap and water.